52 research outputs found

    The use of visual cues for vehicle control and navigation

    Get PDF
    At least three levels of control are required to operate most vehicles: (1) inner-loop control to counteract the momentary effects of disturbances on vehicle position; (2) intermittent maneuvers to avoid obstacles, and (3) outer-loop control to maintain a planned route. Operators monitor dynamic optical relationships in their immediate surroundings to estimate momentary changes in forward, lateral, and vertical position, rates of change in speed and direction of motion, and distance from obstacles. The process of searching the external scene to find landmarks (for navigation) is intermittent and deliberate, while monitoring and responding to subtle changes in the visual scene (for vehicle control) is relatively continuous and 'automatic'. However, since operators may perform both tasks simultaneously, the dynamic optical cues available for a vehicle control task may be determined by the operator's direction of gaze for wayfinding. An attempt to relate the visual processes involved in vehicle control and wayfinding is presented. The frames of reference and information used by different operators (e.g., automobile drivers, airline pilots, and helicopter pilots) are reviewed with particular emphasis on the special problems encountered by helicopter pilots flying nap of the earth (NOE). The goal of this overview is to describe the context within which different vehicle control tasks are performed and to suggest ways in which the use of visual cues for geographical orientation might influence visually guided control activities

    Pilot Situation Awareness and its Implications for Single Pilot Operations: Analysis of a Human-in-the-Loop Study

    Get PDF
    AbstractIn 2012, NASA began exploring the feasibility of single pilot/reduced crew operations in the context of scheduled air carrier operations. The current study examined how important it was for ground-based personnel providing support to single piloted aircraft (ground operators) to have opportunities to acquire situation awareness (SA) prior to being called on to assist an aircraft. We looked at two distinct concepts of operation, which varied in how much information was available to ground operators prior to being called on to assist a critical event (no vs. some Situation Preview). Thirty-five commercial pilots participated in the current study. Results suggested that a ground operators’ lack of initial SA when called on for dedicated assistance is not an issue, at least when the ground operator station displays environmental and systems data which are important to gaining overall SA of the specified aircraft. With appropriate displays, ground operators were able to provide immediate assistance, even if they had minimal SA prior to getting a request

    Urban Air Mobility System Testbed Using CAVE Virtual Reality Environment

    Get PDF
    Urban Air Mobility (UAM) refers to a system of air passenger and small cargo transportation within an urban area. The UAM framework also includes other urban Unmanned Aerial Systems (UAS) services that will be supported by a mix of onboard, ground, piloted, and autonomous operations. Over the past few years UAM research has gained wide interest from companies and federal agencies as an on-demand innovative transportation option that can help reduce traffic congestion and pollution as well as increase mobility in metropolitan areas. The concepts of UAM/UAS operation in the National Airspace System (NAS) remains an active area of research to ensure safe and efficient operations. With new developments in smart vehicle design and infrastructure for air traffic management, there is a need for methods to integrate and test various components of the UAM framework. In this work, we report on the development of a virtual reality (VR) testbed using the Cave Automatic Virtual Environment (CAVE) technology for human-automation teaming and airspace operation research of UAM. Using a four-wall projection system with motion capture, the CAVE provides an immersive virtual environment with real-time full body tracking capability. We created a virtual environment consisting of San Francisco city and a vertical take-off-and-landing passenger aircraft that can fly between a downtown location and the San Francisco International Airport. The aircraft can be operated autonomously or manually by a single pilot who maneuvers the aircraft using a flight control joystick. The interior of the aircraft includes a virtual cockpit display with vehicle heading, location, and speed information. The system can record simulation events and flight data for post-processing. The system parameters are customizable for different flight scenarios; hence, the CAVE VR testbed provides a flexible method for development and evaluation of UAM framework

    Factors Influencing the Decisions and Actions of Pilots and Air Traffic Controllers in Three Plausible NextGen Environments

    Get PDF
    In the current air traffic management (ATM) system, pilots and air traffic controllers have well-established roles and responsibilities: pilots fly aircraft and are concerned with energy management, fuel efficiency, and passenger comfort; controllers separate aircraft and are concerned with safety and management of traffic flows. Despite having different goals and obligations, both groups must be able to effectively communicate and interact with each other for the ATM system to work. This interaction will become even more challenging as traffic volume increases dramatically in the near future. To accommodate this increase, by 2025 the national air transportation system in the U.S. will go through a transformation that will modernize the ATM system and make it safer, more effective, and more efficient. This new system, NextGen, will change how pilots and controllers perform their tasks by incorporating advanced technologies and employing new procedures. It will also distribute responsibility between pilots, controllers and automation over such tasks as maintaining aircraft separation. The present chapter describes three plausible concepts of operations that allocate different ATM responsibilities to these groups. We describe how each concept changes the role of each operator and the types of decisions and actions performed by them

    Concept of Operations for RCO SPO

    Get PDF
    Reduced crew operations (RCO) refers to the reduction of crew members flying long-haul or military operations with more than one pilot onboard. Single pilot operations (SPO) refers to flying a commercial transport aircraft with only one pilot on board the aircraft, assisted by advanced onboard automation andor ground operators providing piloting support services. Properly implemented, RCO/SPO could provide operating cost savings while maintaining a level of safety no less than conventional two-pilot commercial operations. A concept of operations (ConOps) for any paradigm describes the characteristics of its various components and their integration in a multi-dimensional design space. This paper presents key options for humanautomation function allocation being considered by NASA in its ongoing development of RCO/SPO ConOps

    Task Allocation for Single Pilot Operations: A Role for the Ground

    Get PDF
    Researchers at NASA Ames Research Center and NASA Langley Research Center are jointly investigating issues associated with potential configurations for an environment in which a single pilot, or reduced crew, might operate. The research summarized in this document represents several of the efforts being put forth at NASA Ames Research Center. Specifically, researchers at NASA Ames Research Center coordinated and hosted a technical interchange meeting in order to gain insight from members of the aviation community. A description of this meeting and the findings are presented first. Thereafter, plans for ensuing research are presented

    Intuitiveness of Symbol Features for Air Traffic Management

    Get PDF
    We present the results of two online surveys asking participants to indicate what type of air traffic information might be conveyed by a number of symbols and symbol features (color, fill, text, and shape). The results of this initial study suggest that the well-developed concepts of ownership, altitude, and trajectory are readily associated with certain symbol features, while the relatively novel concept of equipage was not clearly associated with any specific symbol feature

    Effects of Force Feedback and Distractor Location on a CDTI Target Selection Task

    Get PDF
    AbstractNew flight deck technologies need to be implemented in order to support the projected rises in traffic levels. Future cockpit displays of traffic information (CDTIs) shall accommodate the altered responsibilities of pilots by facilitating more efficient routes and minimizing conflicts. However, the unstable nature of the cockpit may present challenges when precise inputs are required. The present study investigated the effects of force feedback and distractors on point-and-click movement times in a CDTI environment. Participants performed target selection tasks with multiple levels of force feedback and distractor location. Results implied that force feedback failed to benefit movement times relative to the standard computer mouse. However, substantial interactions between distractor effects, force levels, and other target characteristics are explored

    Toward Single Pilot Operations: The Impact of the Loss of Non-Verbal Communication on the Flight Deck

    Get PDF
    Since the 1950s, the crew required to fly transport category aircraft has been reduced from five to two. NASA is currently exploring the feasibility of a further reduction to one pilot. In this study we examine the effects of separating the pilots on crew interaction. The results are consistent with earlier research on decision-making between remote groups. Pilots strongly prefer face-to-face interactions; however, we could find no impact of separation on their ultimate decisions. There were a number of areas in which separation negatively affected communications. We discuss possible mitigations for these areas

    Human Automation Teaming: Lessons Learned and Future Directions

    Get PDF
    Full autonomy seems to be the goal for system developers in almost every area of the economy. However, as we move from automated systems to autonomous systems, designers have needed to insert humans to oversee automation that has traditionally been brittle or incomplete. This creates its own problems as the operator is usually out of the loop when the automation hands over problems that it cannot handle. To better handle these situations, it has been proposed that we develop human automation teams that have shared goals and objectives to support task performance. This paper will describe an initial model of Human Automation Teaming (HAT) which has three elements: transparency, bi-directional communications, and human-directed execution. Transparency in our model is a method for giving insight into the reasoning behind automated recommendations and actions, bi-directional communication allows the operator to communicate directly with the automation, and finally the automation defers execution to the human. The model was implemented through a number of features on an electronic flight bag (EFB) which are described in the paper. The EFB was installed in a mid-fidelity flight simulator and used by 12 airline pilots to support diversion decisions during off-nominal flight scenarios. Pilots reported that working with the HAT automation made diversion decisions easier and reduced their workload. They also reported that the information provided about diversion airports was similar to what they would receive from ground dispatch, thus making coordination with dispatch easier and less time consuming. These HAT features engender more trust in the automation when appropriate, and less when not, allowing improved supervision of automated functions by flight crews
    • …
    corecore